KENDRION
BINDER MAGNETE
$\underbrace{}_{-}$

33 43501B00

Connection plan and terminal assignment

(6) Casing
(7) Cover turned by 180° (folded open)
(8) Potentiometer dither amplitude
(9) TP $1=$ Test point 1
(10) TP $2=$ Test point 2
(11) Screw for attaching to proportional solenoid
(12) Fuse TR 5 F 2 A
(13) Setpoint

Device B00 with bridge B 1:0 \ldots.. 10 V
without bridge B 1:0 $\mathbf{0} 15 \mathrm{~V}$
Device B05 with bridge B1: $0 \ldots 8 \mathrm{v}$ without bridge B10 ... 10 V
(14) Desired-value signal with $R=500$ Ohms and bridge $\mathrm{B} 1: 0 \ldots 20 \mathrm{~mA}$
(15) Dither signal with bridge B 2: 100 Hz without bridge B 2: 50 Hz
(16) Potentiometer ramp decline time $\mathrm{t}_{\text {down }}$
(17) Potentiometer ramp rise time t_{up}
(18) Potentiometer base current $I_{\text {min }}$
(19) Potentiometer maximum current $I_{\text {max }}$

Terminal 1: $O V U_{B}$ (oparating)
Terminal 2: OV potentiometer
Terminal 3: Desired-value input (potentiometer slider) Terminal 4: + potentiometer (device B00: + 15 V , device $\mathrm{B} 05:+8 \mathrm{~V}$. Max. permissible load 5 mA Terminal 5: Operating voltage U_{B}

Technical data

33 43501B00 / 33 43501B05
Product Specification

Controller / amplifier

for proportional solenoids
The controller / amplifier is designed to control a proportional solenoid with constant current. The unit can be directly mounted to solenoids having DIN 43650 connectors.
The principal elements of the regulator are: voltage stabilization, linear ramp former for positive and negative ramp, dither oscillator, fuse elements and chopped power output stage
(\ddagger ~ 2.5 kHz).
The dither amplitude can be adjusted by the potentiometer "dither signal", the base current with $I_{\text {min }}$, the maximum current with $I_{\max }$ and the ramp raise time with t_{up} and the ramp decline time $t_{\text {down }}$.
The emergency STOP function is achieved by interrupting the operating voltage.

Design variants

Type 33435 01B00
Operating voltage $\mathrm{U}_{\mathrm{B}}: 18$... 32 V
Type 33 43501B05
Operating voltage U_{B} : $11 \ldots 18 \mathrm{~V}$
Subject to alteration.
Please observe ordering data!

Device 33 43501B0.	B00	B05
Operating voltage $\mathrm{U}_{\mathrm{B}}{ }^{1}$) Residual ripple Maximum output current ${ }^{2}$) Temperature drift Voltage dependency Base current (adjustable) $I_{\text {min }}$ Max. current (adjustable) $I_{\text {max }}$ Fuse Dither frequency (optional) Dither amplitude (adjustable) Stabilized voltage (terminal 4) Maximum loadability Setpoint signal (terminal 3) Optional Ramp rise and decline time (separatly adjustable) related to desired-value signal 0...max. Temperature range Con. for series terminal (via Pg11) Connecting cross-section Type of protection		$\begin{aligned} & 111 \ldots 18 \mathrm{~V} \\ & \leqq 10 \% \\ & 2.4 \mathrm{~A} \\ & \\ & \\ & \\ & \\ & 50 / 100 \mathrm{~Hz} \\ & 0 \ldots .750 \mathrm{~mA}_{\text {ss }} \\ & 8.2 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \leqq 5 \mathrm{~mA} \\ & 0 . \ldots \mathrm{V} / 0 . .10 \mathrm{~V} \\ & 0 \ldots . .20 \mathrm{~mA} \\ & \\ & 0.1 \ldots 6 \mathrm{~s} \\ & \text { desired-value } \\ & \text { signal }=0 \ldots \mathrm{max} . \\ & -20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C} \\ & 5-\text { pole } \\ & 1.5 \mathrm{~mm} 2 \text { fine wire } \\ & \mathrm{IP} 65 \end{aligned}$
Basic setting		
$\begin{array}{\|l\|} \hline I_{\text {min }} \\ I_{\text {max }} \\ t_{\text {up }}=t_{\text {down }} \\ \text { Dither amplitude } \\ \hline \end{array}$	$\begin{aligned} & \hline 0 \mathrm{~A} \\ & 2.4 \mathrm{~A} \\ & <0.1 \mathrm{~s} \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \mathrm{~A} \\ & 2.2 \mathrm{~A} \\ & <0.1 \mathrm{~s} \\ & 0 \\ & \hline \end{aligned}$

${ }^{1}$) Direct connection to battery or mains unit necessary.

1. Mounting and Connecting Instructions
1.1 Supply voltage

Device B00:18 ... 32 V .
Device B05:11 ... 18 V
Smoothed d.c. voltage with residual ripple $\leqq 10 \%$. This is achieved with bridgerectified voltage and a capacitor circuited parallel to the supply voltage.
Recommended values
$2200 \mu \mathrm{~F} / 40 \mathrm{~V}$ to $\mathrm{I}_{\max }=1.2 \mathrm{~A}$ $4700 \mu \mathrm{~F} / 40 \mathrm{~V}$ to $\mathrm{I}_{\text {max }}=2.6 \mathrm{~A}$ CAUTION: Overvoltage will damage the current regulator.
1.2 It is necessary to connect the supply line directly to the battery or the mains.
1.3 Shielded cable must be used if the length exceeds 3 m . The screen must be connected at one end to terminal 2.
1.4 The lines must not be wired paralle to power lines.
1.5 The voltage at terminal 3 must no become negative. A negative voltage causes faulty reactions and destroys the current regulator.

2 Setting Instructions

Before the following settings the potentiometer "dither signal" (8) must be turned to zero (anticlockwise).
It is recommended to measure the current as described under 3.4
2.1 Adjust the base current Potentiometer $I_{\text {min }}$ (18)

1. Adjust desired value to zero. 2. Turn potentiometer $I_{\max }$ clockwise until the desired magnitude (pressure or quantity) is reached.
2.2 Adjust maximum current

Potentiometer $I_{\text {max }}$ (19)

1. Adjust desired value to maximum value.
2. Turn potentiometer $I_{\max }$ anti-clock-wise until the desired hydraulic magnitude is reached.
2.3 Ramp rise time and decline time potentiometer $\mathrm{t}_{\text {up }}$ (17) and $\mathrm{t}_{\text {down }}$ (16) Turn the potentiometer to adjust the shift time in such a manner that the desired transient response is achieved.
2.4 Adjust dither amplitude by potentiometer 8
3. Select dither signal frequency according to solenoid and valve size with bridge B 2: 100 Hz , without bridge B 2: 50 Hz
4. Adjust approx. $0.4 \times I_{\max }{ }^{1}$) with external potentiometer (terminal 3)
5. Measure current as described in
3.4.
6. Turn potentiometer maximum counter-wise until the hydraulic system starts to oscilate or the current has increased by maximum 0.01 A .
1) $I_{\max }=$ equals current setting as per note 2.2.
Note: $I_{\text {max }}$ must not exceed current limit llim of solenoid.

3 Trouble-shooting

3.1 Measuring the operating voltage

Device B00: +18 ... 32 V .
Device B00: + 18 ... 32 V .
Between terminal 5 and terminal 1.
3.2 Measuring the internal, stabilized voltage.
Device B00: + 15 V
Device B05: + 8 V.
Between terminal 4 and terminal 2.
3.3 Measuring the desired input signal With bridge 1 (13): $0 . . .+10 \mathrm{~V}$ or without bridge 1 (13): $0 \ldots+15 \mathrm{~V}$. At terminal 3 and terminal 2. By current measurement 0... 20 mA . In front of terminal 3 .
3.4 Measuring the current in the excitation winding of the solenoid as voltage drop via the measuring resistance.
Test point 1(9) negative potential; test point 2 (10) positive potential. A voltage drop of 100 mV equals 0.5 A.

IMPORTANT: The current can only be measured if the voltage regulator is mounted on the solenoid.
3.5 Constant-current regulation. The desired maximum current can only be achieved as long as the following condition is provided:

$$
I_{M}=\frac{U_{B}-U_{R}}{R_{E}}
$$

$I_{M}=$ desired maximum current
$U_{0}=$ current root-meansquare operating voltage
$U_{c}=$ max. voltage drop on controller $=2 \mathrm{~V}$
$R_{E}=\quad$ current resistance of excitation winding

Terminal assignment

Terminal 1:0 V U
Terminal 2: 0 V potentiometer
Terminal 3: Setpoint
(potentiometer slider)
Terminal 4: + potentiometer
(device B00: + 15 V ,
device $\mathrm{B05}:+8 \mathrm{~V}$.
Max. permissible load 5 mA)
Terminal 5: U_{B}

CE

These devices meet the requirements of the EMC Directive 89/336/EEC Compliance with the following standards is confirmed:
EN 55011 (VDE 0875, part 11, 1992)
Group 1, class A,
disturbance voltage
Group 1, class B,
disturbance radiation
IEC 801-3, 1984
(VDE 0843, part 3, 1983)
Test severity level 3
IEC 801-4, draft
(VDE 0843, part 4, 1987)
Test severity level 2
IEC 801-5 (VDE 0843, part 5, 1992)
Test severity level 3

Connection of setpoint inputs

With a potentiometer
5... 20kOhm
(2) Device BOO without bridge

B05 with bridge

With external setpoint signal
(1) Setpoint
(2) Device B00:0...10V with bridge
$0 . .15 \mathrm{~V}$ without bridge
B05: $0 \ldots 8 \mathrm{~V}$ with bridge
$0 . .10 \mathrm{~V}$ without bridge
(3) Desired value frame OV

With several potentiometers
CAUTION: The total resistance of all connected potentiometers
must be more than 5 kOhm
(2) Device B 00 without bridge, B05 with bridge

With current input
(1) Input current 0... 20 mA
(2) Device B 00 without bridge, B 05 with bridge
$\mathrm{R}_{\mathrm{M}}=500 \mathrm{Ohm}-1 / 4 \mathrm{~W}$

With 2 controllers for $4 / 3$ way proportional valve
(2) Device B 00 without bridge, B05 with bridge
(4) Joy Stick Type 33250 04D51/D52

Kendrion Binder Magnete GmbH

Mönchweilerstraße 1
D-78048 Villingen-Schwenningen
P.O.Box 1220 (Postal code 78002)

Telephone +49/7721/877-0
Telefax +49/7721/877348

Ordering data

Controller / amplifier
Type: 33435 Size: 01B0.
Operating voltage $U_{B}: \ldots . \mathrm{V}$

Ordering Example

Controller / amplifier 33 43501B05

Ub: 11 ... 18 V
Spare Parts
Fuse Mat.-No. 420504
Short-circuiting plug
Mat.-No. 414654
PG 11 screw joint
Mat.-No. 412047
Flat seal Mat.-No. 604791

